第1篇 初中數(shù)學(xué)知識(shí)點(diǎn)一元一次方程總結(jié) 1450字
初中數(shù)學(xué)知識(shí)點(diǎn)一元一次方程總結(jié)
一、方程的有關(guān)概念
1.方程:含有未知數(shù)的等式就叫做方程。
2.一元一次方程:只含有一個(gè)未知數(shù)(元)x,未知數(shù)x的指數(shù)都是1(次),這樣的方程叫做一元一次方程。例如:1700+50x=1800,2(x+1.5x)=5等都是一元一次方程。
3.方程的解:使方程中等號(hào)左右兩邊相等的未知數(shù)的值,叫做方程的解。
注:⑴方程的解和解方程是不同的概念,方程的解實(shí)質(zhì)上是求得的結(jié)果,它是一個(gè)數(shù)值(或幾個(gè)數(shù)值),而解方程的含義是指求出方程的解或判斷方程無(wú)解的過(guò)程。⑵方程的解的檢驗(yàn)方法,首先把未知數(shù)的值分別代入方程的左、右兩邊計(jì)算它們的值,其次比較兩邊的值是否相等從而得出結(jié)論。
二、等式的性質(zhì)
(1)等式兩邊都加上(或減去)同個(gè)數(shù)(或式子),結(jié)果仍相等。用式子形式表示為:如果a=b,那么a±c=b±c
(2)等式兩邊乘同一個(gè)數(shù),或除以同一個(gè)不為0的數(shù),結(jié)果仍相等,用式子形式表示為:如果a=b,那么ac=bc;如果a=b(c≠0),那么ac=bc
三、移項(xiàng)法則:把等式一邊的某項(xiàng)變號(hào)后移到另一邊,叫做移項(xiàng)。
四、去括號(hào)法則
1.括號(hào)外的因數(shù)是正數(shù),去括號(hào)后各項(xiàng)的符號(hào)與原括號(hào)內(nèi)相應(yīng)各項(xiàng)的符號(hào)相同.
2.括號(hào)外的因數(shù)是負(fù)數(shù),去括號(hào)后各項(xiàng)的符號(hào)與原括號(hào)內(nèi)相應(yīng)各項(xiàng)的符號(hào)改變.
五、解方程的一般步驟
1.去分母(方程兩邊同乘各分母的最小公倍數(shù))
2.去括號(hào)(按去括號(hào)法則和分配律)
3.移項(xiàng)(把含有未知數(shù)的項(xiàng)移到方程一邊,其他項(xiàng)都移到方程的另一邊,移項(xiàng)要變號(hào))
4.合并(把方程化成ax=b(a≠0)形式)
5.系數(shù)化為1(在方程兩邊都除以未知數(shù)的系數(shù)a,得到方程的解x=ba)。
六、用方程思想解決實(shí)際問(wèn)題的.一般步驟
1.審:審題,分析題中已知什么,求什么,明確各數(shù)量之間的關(guān)系。
2.設(shè):設(shè)未知數(shù)(可分直接設(shè)法,間接設(shè)法)。
3.列:根據(jù)題意列方程。
4.解:解出所列方程。
5.檢:檢驗(yàn)所求的解是否符合題意。
6.答:寫(xiě)出答案(有單位要注明答案)。
七、有關(guān)常用應(yīng)用類(lèi)型題及各量之間的關(guān)系
1、和、差、倍、分問(wèn)題:
(1)倍數(shù)關(guān)系:通過(guò)關(guān)鍵詞語(yǔ)“是幾倍,增加幾倍,增加到幾倍,增加百分之幾,增長(zhǎng)率……”來(lái)體現(xiàn)。
(2)多少關(guān)系:通過(guò)關(guān)鍵詞語(yǔ)“多、少、和、差、不足、剩余……”來(lái)體現(xiàn)。
2、等積變形問(wèn)題:
“等積變形”是以形狀改變而體積不變?yōu)榍疤?。常用等量關(guān)系為:
①形狀面積變了,周長(zhǎng)沒(méi)變;
②原料體積=成品體積。
3、勞力調(diào)配問(wèn)題:
這類(lèi)問(wèn)題要搞清人數(shù)的變化,常見(jiàn)題型有:
(1)既有調(diào)入又有調(diào)出。
(2)只有調(diào)入沒(méi)有調(diào)出,調(diào)入部分變化,其余不變。
(3)只有調(diào)出沒(méi)有調(diào)入,調(diào)出部分變化,其余不變。
4、數(shù)字問(wèn)題
(1)要搞清楚數(shù)的表示方法:一個(gè)三位數(shù)的百位數(shù)字為a,十位數(shù)字是b,個(gè)位數(shù)字為c(其中a、b、c均為整數(shù),且1≤a≤9,0≤b≤9,0≤c≤9)則這個(gè)三位數(shù)表示為:100a+10b+c
(2)數(shù)字問(wèn)題中一些表示:兩個(gè)連續(xù)整數(shù)之間的關(guān)系,較大的比較小的大1;偶數(shù)用2n表示,連續(xù)的偶數(shù)用2n+2或2n—2表示;奇數(shù)用2n+1或2n—1表示。
5、工程問(wèn)題:
工程問(wèn)題中的三個(gè)量及其關(guān)系為:工作總量=工作效率×工作時(shí)間
6、行程問(wèn)題:
(1)行程問(wèn)題中的三個(gè)基本量及其關(guān)系:路程=速度×?xí)r間。
(2)基本類(lèi)型有
①相遇問(wèn)題;
②追及問(wèn)題;常見(jiàn)的還有:相背而行;行船問(wèn)題;環(huán)形跑道問(wèn)題。
7、商品銷(xiāo)售問(wèn)題
有關(guān)關(guān)系式:
商品利潤(rùn)=商品售價(jià)—商品進(jìn)價(jià)=商品標(biāo)價(jià)×折扣率—商品進(jìn)價(jià)
商品利潤(rùn)率=商品利潤(rùn)/商品進(jìn)價(jià)
商品售價(jià)=商品標(biāo)價(jià)×折扣率
8、儲(chǔ)蓄問(wèn)題
(1)顧客存入銀行的錢(qián)叫做本金,銀行付給顧客的酬金叫利息,本金和利息合稱(chēng)本息和,存入銀行的時(shí)間叫做期數(shù),利息與本金的比叫做利率。利息的20%付利息稅
(2)利息=本金×利率×期數(shù)
本息和=本金+利息
利息稅=利息×稅率(20%)
第2篇 初中數(shù)學(xué)一元一次方程知識(shí)點(diǎn)總結(jié) 1700字
關(guān)于初中數(shù)學(xué)一元一次方程知識(shí)點(diǎn)總結(jié)
一、方程的有關(guān)概念
1.方程:含有未知數(shù)的等式就叫做方程.
2. 一元一次方程:只含有一個(gè)未知數(shù)(元)x,未知數(shù)x的指數(shù)都是1(次),這樣的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x)=5等都是一元一次方程.
3.方程的解:使方程中等號(hào)左右兩邊相等的未知數(shù)的值,叫做方程的解.
注:⑴ 方程的解和解方程是不同的概念,方程的解實(shí)質(zhì)上是求得的結(jié)果,它是一個(gè)數(shù)值(或幾個(gè)數(shù)值),而解方程的含義是指求出方程的解或判斷方程無(wú)解的過(guò)程. ⑵ 方程的.解的檢驗(yàn)方法,首先把未知數(shù)的值分別代入方程的左、右兩邊計(jì)算它們的值,其次比較兩邊的值是否相等從而得出結(jié)論.
二、等式的性質(zhì)
等式的性質(zhì)(1):等式兩邊都加上(或減去)同個(gè)數(shù)(或式子),結(jié)果仍相等.
等式的性質(zhì)(1)用式子形式表示為:如果a=b,那么a±c=b±c
等式的性質(zhì)(2):等式兩邊乘同一個(gè)數(shù),或除以同一個(gè)不為0的數(shù),結(jié)果仍相等,等式的性質(zhì)(2)用式子形式表示為:如果a=b,那么ac=bc;如果a=b(c≠0),那么ca=cb
三、移項(xiàng)法則:
把等式一邊的某項(xiàng)變號(hào)后移到另一邊,叫做移項(xiàng).
四、去括號(hào)法則
1. 括號(hào)外的因數(shù)是正數(shù),去括號(hào)后各項(xiàng)的符號(hào)與原括號(hào)內(nèi)相應(yīng)各項(xiàng)的符號(hào)相同.
2. 括號(hào)外的因數(shù)是負(fù)數(shù),去括號(hào)后各項(xiàng)的符號(hào)與原括號(hào)內(nèi)相應(yīng)各項(xiàng)的符號(hào)改變.
五、解方程的一般步驟
1. 去分母(方程兩邊同乘各分母的最小公倍數(shù))
2. 去括號(hào)(按去括號(hào)法則和分配律)
3. 移項(xiàng)(把含有未知數(shù)的項(xiàng)移到方程一邊,其他項(xiàng)都移到方程的另一邊,移項(xiàng)要變號(hào))
4. 合并(把方程化成ax = b (a≠0)形式)
5. 系數(shù)化為1(在方程兩邊都除以未知數(shù)的系數(shù)a,得到方程的解x=a(b).
六、用方程思想解決實(shí)際問(wèn)題的一般步驟
1. 審:審題,分析題中已知什么,求什么,明確各數(shù)量之間的關(guān)系.
2. 設(shè):設(shè)未知數(shù)(可分直接設(shè)法,間接設(shè)法)
3. 列:根據(jù)題意列方程.
4. 解:解出所列方程.
5. 檢:檢驗(yàn)所求的解是否符合題意.
6. 答:寫(xiě)出答案(有單位要注明答案)
七、有關(guān)常用應(yīng)用類(lèi)型題及各量之間的關(guān)系
1. 和、差、倍、分問(wèn)題:
增長(zhǎng)量=原有量×增長(zhǎng)率 現(xiàn)在量=原有量+增長(zhǎng)量
(1)倍數(shù)關(guān)系:通過(guò)關(guān)鍵詞語(yǔ)“是幾倍,增加幾倍,增加到幾倍,增加百分之幾,增長(zhǎng)率……”來(lái)體現(xiàn).
(2)多少關(guān)系:通過(guò)關(guān)鍵詞語(yǔ)“多、少、和、差、不足、剩余……”來(lái)體現(xiàn).
2. 等積變形問(wèn)題:
(1)“等積變形”是以形狀改變而體積不變?yōu)榍疤?常用等量關(guān)系為:
①形狀面積變了,周長(zhǎng)沒(méi)變;
②原料體積=成品體積.
(2 )常見(jiàn)幾何圖形的面積、體積、周長(zhǎng)計(jì)算公式,依據(jù)形雖變,但體積不變.
①圓柱體的體積公式 v=底面積×高=s·h=πr2h
②長(zhǎng)方體的體積 v=長(zhǎng)×寬×高=abc
3. 勞力調(diào)配問(wèn)題:
這類(lèi)問(wèn)題要搞清人數(shù)的變化,常見(jiàn)題型有:
(1)既有調(diào)入又有調(diào)出;
(2)只有調(diào)入沒(méi)有調(diào)出,調(diào)入部分變化,其余不變;
(3)只有調(diào)出沒(méi)有調(diào)入,調(diào)出部分變化,其余不變
4. 數(shù)字問(wèn)題
(1)要搞清楚數(shù)的表示方法:一般可設(shè)個(gè)位數(shù)字為a,十位數(shù)字為b,百位數(shù)字為c.
十位數(shù)可表示為10b+a, 百位數(shù)可表示為100c+10b+a. 然后抓住數(shù)字間或新數(shù)、原數(shù)之間的關(guān)系找等量關(guān)系列方程(其中a、b、c均為整數(shù),且1≤a≤9, 0≤b≤9, 0≤c≤9)
(2)數(shù)字問(wèn)題中一些表示:兩個(gè)連續(xù)整數(shù)之間的關(guān)系,較大的比較小的大1;偶數(shù)用2n表示,連續(xù)的偶數(shù)用2n+2或2n—2表示;奇數(shù)用2n+1或2n—1表示.
5. 工程問(wèn)題:
工程問(wèn)題:工作量=工作效率×工作時(shí)間
完成某項(xiàng)任務(wù)的各工作量的和=總工作量=1
6.行程問(wèn)題:
路程=速度×?xí)r間 時(shí)間=路程÷速度 速度=路程÷時(shí)間
(1)相遇問(wèn)題: 快行距+慢行距=原距
(2)追及問(wèn)題: 快行距-慢行距=原距
(3)航行問(wèn)題:順?biāo)?風(fēng))速度=靜水(風(fēng))速度+水流(風(fēng))速度
逆水(風(fēng))速度=靜水(風(fēng))速度-水流(風(fēng))速度
抓住兩碼頭間距離不變,水流速和船速(靜不速)不變的特點(diǎn)考慮相等關(guān)系.
7. 商品銷(xiāo)售問(wèn)題
(1)商品利潤(rùn)率=商品利潤(rùn)/商品成本×100%
(2)商品銷(xiāo)售額=商品銷(xiāo)售價(jià)×商品銷(xiāo)售量
(3)商品的銷(xiāo)售利潤(rùn)=(銷(xiāo)售價(jià)-成本價(jià))×銷(xiāo)售量
(4)商品打幾折出售,就是按原標(biāo)價(jià)的百分之幾十出售,如商品打8折出售,即按原標(biāo)價(jià)的80%出售.有關(guān)關(guān)系式:商品售價(jià)=商品標(biāo)價(jià)×折扣率
(5)商品利潤(rùn)=商品售價(jià)—商品進(jìn)價(jià)=商品標(biāo)價(jià)×折扣率—商品進(jìn)價(jià)
8. 儲(chǔ)蓄問(wèn)題
⑴ 顧客存入銀行的錢(qián)叫做本金,銀行付給顧客的酬金叫利息,本金和利息合稱(chēng)本息和,存入銀行的時(shí)間叫做期數(shù),利息與本金的比叫做利率.利息的20%付利息稅
⑵ 利息=本金×利率×期數(shù)
本息和=本金+利息
利息稅=利息×稅率(20%)
(3)利潤(rùn)=每個(gè)期數(shù)內(nèi)的利息/本金×100%
第3篇 初中數(shù)學(xué)一元一次方程的基礎(chǔ)知識(shí)點(diǎn)總結(jié) 400字
初中數(shù)學(xué)一元一次方程的基礎(chǔ)知識(shí)點(diǎn)總結(jié)
據(jù)調(diào)查,“方程”一詞來(lái)源于中國(guó)古算術(shù)書(shū)《九章算術(shù)》,在19世紀(jì)以前,方程一直是代數(shù)的核心內(nèi)容。
一元一次方程
通過(guò)化簡(jiǎn),只含有一個(gè)未知數(shù),且含有未知數(shù)的最高次項(xiàng)的'次數(shù)是一的等式,叫一元一次方程。通常形式是ax+b=0(a,b為常數(shù),且a≠0)。一元一次方程屬于整式方程,即方程兩邊都是整式。
一元指方程僅含有一個(gè)未知數(shù),一次指未知數(shù)的次數(shù)為1,且未知數(shù)的系數(shù)不為0。我們將ax+b=0(其中x是未知數(shù),a、b是已知數(shù),并且a≠0)叫一元一次方程的標(biāo)準(zhǔn)形式。
這里a是未知數(shù)的系數(shù),b是常數(shù),x的次數(shù)必須是1。即一元一次方程必須同時(shí)滿(mǎn)足4個(gè)條件:⑴它是等式;⑵分母中不含有未知數(shù);⑶未知數(shù)最高次項(xiàng)為1; ⑷含未知數(shù)的項(xiàng)的系數(shù)不為0。
步驟:去分母→去括號(hào)→移項(xiàng)→合并同類(lèi)項(xiàng)→系數(shù)化為一。
在代數(shù)知識(shí)的入門(mén)學(xué)習(xí)中,我們就會(huì)接觸關(guān)于一元一次方程的知識(shí)要領(lǐng),其重要性是可見(jiàn)的。