歡迎光臨管理者范文網(wǎng)
當前位置:管理者范文網(wǎng) > 范文大全 > 工作總結(jié) > 教學工作總結(jié)

九年級知識點總結(jié)(優(yōu)選4篇)

更新時間:2024-11-20 查看人數(shù):55

九年級知識點總結(jié)

第1篇 九年級知識點重點總結(jié)

1、化學是一門研究物質(zhì)的組成、結(jié)構(gòu)、性質(zhì)以及變化規(guī)律的以實驗為基礎自然科學。物理和化學的共同點:都是以實驗為基礎的自然科學.

2、化學變化和物理變化的根本區(qū)別是:有沒有新物質(zhì)的生成。化學變化中伴隨發(fā)生一些如放熱、發(fā)光、變色、放出氣體、生成沉淀等現(xiàn)象。

3、物理性質(zhì)——狀態(tài)、氣味、熔點、沸點、硬度、密度、延展性、溶解性、揮發(fā)性、導電性、吸附性等。

4、化學性質(zhì)——氧化性、還原性、金屬活動性、活潑性、穩(wěn)定性、腐蝕性、毒性等。

5、綠色粉末堿式碳酸銅加熱后,①綠色粉末變成黑色,②管口出現(xiàn)小水滴,③石灰水變渾濁。cu2(oh)2co3—

6、我國的某些化學工藝像造紙、制火藥、燒瓷器,發(fā)明很早,對世界文明作出過巨大貢獻。

(空氣)

1、空氣中氧氣含量的測定:實驗現(xiàn)象:①紅磷(不能用木炭、硫磺、鐵絲等代替)燃燒時有大量白煙生成,②同時鐘罩內(nèi)水面逐漸上升,冷卻后,水面上升約1/5體積。

若測得水面上升小于1/5體積的原因可能是:①紅磷不足,氧氣沒有全部消耗完②裝置漏氣③沒有冷卻到室溫就打開彈簧夾。

2、法國化學家拉瓦錫提出了空氣主要是由氧氣和氮氣組成的。舍勒和普利斯特里先后用不同的方法制得了氧氣。

3、空氣的成分按體積分數(shù)計算,大約是氮氣為78%、氧氣為21%(氮氣比氧氣約為4∶1)、稀有氣體(混合物)為0.94%、二氧化碳為0.03%、其它氣體和雜質(zhì)為0.03%??諝獾某煞忠缘獨夂脱鯕鉃橹鳎瑢儆诨旌衔?。

4、排放到大氣中的有害物質(zhì),大致可分為粉塵和氣體兩類,氣體污染物較多是so2、co、no2,這些氣體主要來自礦物燃料的燃燒和工廠的廢氣。

(水)

1、水在地球上分布很廣,江河、湖泊和海洋約占地球表面積的3/4,人體含水約占人體質(zhì)量的2/3。淡水資源卻不充裕,地面淡水量還不到總水量的1%,而且分布很不均勻。

2、水的污染來自于①工廠生產(chǎn)中的廢渣、廢水、廢氣,②生活污水的任意排放,③農(nóng)業(yè)生產(chǎn)中施用的農(nóng)藥、化肥隨雨水流入河中。

3、預防和消除對水源的污染,保護和改善水質(zhì),需采取的措施:①加強對水質(zhì)的監(jiān)測,②工業(yè)“三廢”要經(jīng)過處理后再排放,③農(nóng)業(yè)上要合理(不是禁止)使用化肥和農(nóng)藥等。

4、電解水實驗可證明:水是由氫元素和氧元素組成的;在化學變化中,分子可以分成原子,而原子卻不能再分。

5、電解水中正極產(chǎn)生氧氣,負極產(chǎn)生氫氣,體積比(分子個數(shù)比)為1∶2,質(zhì)量比為8∶1,在實驗中常加稀h2so4和naoh來增強水的導電性。通的是直流電。

(o2、h2、co2、co、c)

1、氧氣是無色無味,密度比空氣略大,不易溶于水,液氧是淡藍色的。

氫氣是無色無味,密度最小,難溶于水。

二氧化碳是無色無味,密度比空氣大,能溶于水。干冰是co2固體。(碳酸氣)

一氧化碳是無色無味,密度比空氣略小,難溶于水。

甲烷是無色無味,密度比空氣小,極難溶于水。俗名沼氣(天然氣的主要成分是ch4)

2、金剛石(c)是自然界中最硬的物質(zhì),石墨(c)是最軟的礦物之一,活性炭、木炭具有強烈的吸附性,焦炭用于冶鐵,炭黑加到橡膠里能夠增加輪胎的耐磨性。

金剛石和石墨的物理性質(zhì)有很大差異的原因是:碳原子排列的不同。

co和co2的化學性質(zhì)有很大差異的原因是:分子的構(gòu)成不同。

生鐵和鋼主要成分都是鐵,但性質(zhì)不同的原因是:含碳量不同。

3、反應物是固體,需加熱,制氣體時則用制o2的發(fā)生裝置。

反應物是固體與液體,不需要加熱,制氣體時則用制h2的發(fā)生裝置。

密度比空氣大用向上排空氣法難或不溶于水用排水法收集

密度比空氣小用向下排空氣法

co2、hcl、nh3只能用向上排空氣法co、n2、(no)只能用排水法

4、①實驗室制o2的方法是:加熱氯酸鉀或高錳酸鉀(方程式)

kclo3—kmno4—

工業(yè)上制制o2的方法是:分離液態(tài)空氣(物理變化)

原理:利用n2、o2的沸點不同,n2先被蒸發(fā),余下的是液氧(貯存在天藍色鋼瓶中)。

②實驗室制h2的方法是:常用鋅和稀硫酸或稀鹽酸

(不能用濃硫酸和硝酸,原因:氧化性太強與金屬反應不生成h2而生成h2o)(也不能用鎂:反應速度太快了;也不能用鐵:反應速度太慢了;也不能用銅,因為不反應)zn+h2so4—

zn+hcl—

工業(yè)上制h2的原料:水、水煤氣(h2、co)、天然氣(主要成分ch4)

③實驗室制co2的方法是:大理石或石灰石和稀鹽酸。不能用濃鹽酸(產(chǎn)生的氣體不純含有hcl),不能用稀硫酸(生成的caso4微溶于水,覆蓋在大理石的表面阻止了反應的進行)。caco3+hcl—工業(yè)上制co2的方法是:煅燒石灰石caco3—

5、氧氣是一種比較活潑的氣體,具有氧化性、助燃性,是一種常用的氧化劑。

①(黑色)c和o2反應的現(xiàn)象是:在氧氣中比在空氣中更旺,發(fā)出白光。

②(黃色)s和o2反應的現(xiàn)象是:在空氣中淡藍色火焰,在氧氣中藍紫色的火焰,生成刺激性氣味的氣體so2。

③(紅色或白色)p和o2反應的現(xiàn)象是:冒白煙,生成白色固體p2o5。(用于發(fā)令槍)

④(銀白色)mg和o2反應的現(xiàn)象是:放出大量的熱,同時發(fā)出耀眼的白光,生成一種白色固體氧化鎂。(用于照明彈等)

⑤(銀白色)fe和o2反應的現(xiàn)象是:劇烈燃燒,火星四射,生成黑色固體fe3o4,注意點:預先放入少量水或一層沙,防止生成的熔化物炸裂瓶底。

⑥h2和o2的現(xiàn)象是:發(fā)出淡藍色的火焰。

⑦co和o2的現(xiàn)象是:發(fā)出藍色的火焰。

⑧ch4和o2的現(xiàn)象是:發(fā)出明亮的藍色火焰。

酒精燃燒c2h5oh+o2—

甲醇燃燒ch3oh+o2—

6、h2、co、c具有相似的化學性質(zhì):①可燃性②還原性

①可燃性h2+o2—可燃性氣體點燃前一定要檢驗純度

co+o2—h2的爆炸極限為4——74.2%

c+o2—(氧氣充足)c+o2—(氧氣不足)

②還原性h2+cuo—黑色變成紅色,同時有水珠出現(xiàn)

c+cuo—黑色變成紅色,同時產(chǎn)生使石灰水變渾濁的氣體

co+cuo—黑色粉末變成紅色,產(chǎn)生使石灰水變渾濁的氣體

7、co2①與水反應:co2+h2o—(紫色石蕊變紅色)

②與堿反應:co2+ca(oh)2—(檢驗co2的方程式)

③與灼熱的碳反應:co2+c—(吸熱反應,既是化合反應又是氧化還原反應,co2是氧化劑)

①除雜:co[co2]通入石灰水co2+ca(oh)2—

co2[co]通過灼熱的氧化銅co+cuo—

cao[caco3]只能煅燒caco3—

②檢驗:cao[caco3]加鹽酸caco3+hcl—

③鑒別:h2、co、ch4可燃性的氣體:看燃燒產(chǎn)物

h2、o2、co2:用燃著的木條

[(h2、co2),(o2、co2),(co、co2)]用石灰水

8、酒精c2h5oh,又名乙醇,工業(yè)酒精中常含有有毒的甲醇ch3oh,

醋酸又名乙酸,ch3cooh,同碳酸一樣,能使紫色石蕊變紅色。

無水醋酸又稱冰醋酸。

當今世界上最重要的三大礦物燃料是:煤、石油、天然氣;煤是工業(yè)的糧食,石油是工業(yè)的血液。其中氣體礦物燃料是:天然氣,固體礦物燃料是煤,氫氣是理想燃料(來源廣,放熱多,無污染)。

第2篇 初中數(shù)學九年級知識點總結(jié)銳角三角函數(shù)

初中數(shù)學九年級知識點總結(jié)銳角三角函數(shù)

一、目標與要求

通過本章知識點的歸納總結(jié),同學們應該熟練掌握以下內(nèi)容:

1.通過實例認識直角三角形的邊角關系,即銳角三角函數(shù)(sina,cosa,tana),記憶30°、45°、60°的正弦、余弦和正切的函數(shù)值,并會由一個特殊角的三角函數(shù)值說出這個角。

2.會使用計算器由已知銳角求它的三角函數(shù)值,由已知三角函數(shù)值會求它的對應的銳角。

3.運用三角函數(shù)解決與直角三角形有關的簡單的.實際問題。

4.理解直角三角形中邊與邊的關系,角與角的關系和邊與角的關系,會運用勾股定理、直角三角形的兩個銳角互余、以及銳角三角函數(shù)解直角三角形,并會用解直角三角形的有關知識解決簡單的實際問題;初步感受高等數(shù)學中的微積分思想。

5.通過綜合運用勾股定理,直角三角形的兩個銳角互余及銳角三角函數(shù)解直角三角形,逐步培養(yǎng)學生分析問題、解決問題的能力。

6.能綜合運用直角三角形的勾股定理與邊角關系解決簡單的實際問題。

二、重點與難點

1.重點

(1)銳角三角函數(shù)的概念和直角三角形的解法,特殊角的三角函數(shù)值也很重要,應該牢牢記住。

(2)能夠運用三角函數(shù)解直角三角形,并解決與直角三角形有關的實際問題。

2.難點

(1)銳角三角函數(shù)的概念。

(2)經(jīng)歷探索30°,45°,60°角的三角函數(shù)值的過程,鍛煉學生觀察、分析,解決問題的能力。

三、知識框架

人教版九年級物理電與磁、信息的傳遞知識點歸納表

第3篇 語文九年級知識點總結(jié)重點字詞整理

沁qìn園 分fèn外 妖嬈ráo

成吉思汗hán 數(shù)shǔ風流人物

點撥:'分' '汗' '數(shù)'是多音字,要注意課文中讀音。

田圃pǔ 禁錮gù 留滯zhì 喑yīn啞

斗笠lì 襁褓qiǎng bǎo

朦朧méng lóng 覆fù蓋 凍僵jiāng

(qī) 棲息 (_uān) 喧響 沉(jì) 寂

赦shè 旁騖wù 佝僂gōu lóu 承蜩tiáo

褻瀆_iè dú 駢pián進 強聒guō不舍

隕yǔn落 詛咒zhòu 靈柩jiù 睿ruì智

憐憫mǐn 恪kè盡職守

庸碌yōng、lù 廓kuò然無累 灰燼jìn

諛yú詞 枘鑿ruì záo 羲_ī 扶掖yè

涕泗sì橫流

忐忑tǎn tè 繁衍yǎn 剎chà那間

一抔póu黃土

幼(zhì) 稚 (bó) 勃然大怒 (shǔ) 曙光

(zhù) 佇立 (niǔ) 紐帶

陰晦huì 瓦楞léng 猹chá 五行_íng缺土

jiàng 秕bǐ谷 鵓鴣bó gū 獾huān豬 潮汛_ùn 顴quán骨

愕è然 嗤chī笑 瑟sè索 寒噤jìn 折shé本 黛dài色 惘wǎng然 恣睢zī suī

拮據(jù)jié jū 棧zhàn橋 別墅shù 牡蠣lì

襤褸lán lǚ 撬qiào開 煞shà白 嘟囔dū nang

糟(tà) 蹋 無(lài) 賴 闊(chuò) 綽

(chà) 詫異 倒(méi)霉

恍惚huǎng hū 沙啞yǎ 紙捻niǎn 簪zān子

毛毛刺刺là 發(fā)窘jiǒng 抽噎yē 楨zhēn

根深蒂dì固 汲jí取 孜孜zī不倦

壓榨zhà 鍥qiè而不舍

肇zhào 嘹liào望 彷徨páng huáng

怡yí情 狡黠_iá 詰jié難

睪gāo 吹毛求疵cī 要訣jué

省_ǐng悟 玄_uán虛 搽chá 誆kuāng騙

趲zǎn行 虞yú候 尷尬gān gà 這廝sī

樸pō刀 恁nèn地 省_ǐng得 崎嶇qíqū

兀的wù dì 慪òu 剜wān 唣zào 忒tuī

面面廝覷qù 聒guō噪 阮ruǎn 嗔chēn

庖páo官 雞肋lèi 夏侯 dūn 食訖qì 佯yáng

簏lù 譖zèn 叱chì退 麾huī軍 綽chāo刀 主簿bù

帶挈qiè 醺_ūn 腆tiǎn著 啐cuì

緊攥zuàn wǎn 桑梓zǐ

商酌zhuó 錠dìng子 瘟wēn

膩nì煩 平仄zè 揣chuǎi摩 應場yáng

蘅 héng 曖ài 謅zhōu 顰pín 紈wán

畫繒zēng 鰥guān

第4篇 2023年數(shù)學九年級知識點總結(jié)

初三數(shù)學知識點 第一章 實數(shù)

★重點★ 實數(shù)的有關概念及性質(zhì),實數(shù)的運算

☆內(nèi)容提要☆

一、 重要概念

1.數(shù)的分類及概念

數(shù)系表:

說明:“分類”的原則:1)相稱(不重、不漏)

2)有標準

2.非負數(shù):正實數(shù)與零的統(tǒng)稱。(表為:_≥0)

常見的非負數(shù)有:

性質(zhì):若干個非負數(shù)的和為0,則每個非負擔數(shù)均為0。

3.倒數(shù): ①定義及表示法

②性質(zhì):a.a≠1/a(a≠±1);b.1/a中,a≠0;c.01;a>1時,1/a<1;d.積為1。

4.相反數(shù): ①定義及表示法

②性質(zhì):a.a≠0時,a≠-a;b.a與-a在數(shù)軸上的位置;c.和為0,商為-1。

5.數(shù)軸:①定義(“三要素”)

②作用:a.直觀地比較實數(shù)的大小;b.明確體現(xiàn)絕對值意義;c.建立點與實數(shù)的一一對應關系。

6.奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)(正整數(shù)—自然數(shù))

定義及表示:

奇數(shù):2n-1

偶數(shù):2n(n為自然數(shù))

7.絕對值:①定義(兩種):

代數(shù)定義:

幾何定義:數(shù)a的絕對值頂?shù)膸缀我饬x是實數(shù)a在數(shù)軸上所對應的點到原點的距離。

②│a│≥0,符號“││”是“非負數(shù)”的標志;③數(shù)a的絕對值只有一個;④處理任何類型的題目,只要其中有“││”出現(xiàn),其關鍵一步是去掉“││”符號。

二、 實數(shù)的運算

1. 運算法則(加、減、乘、除、乘方、開方)

2. 運算定律(五個—加法[乘法]交換律、結(jié)合律;[乘法對加法的]

分配律)

3. 運算順序:a.高級運算到低級運算;b.(同級運算)從“左”

到“右”(如5÷ ×5);c.(有括號時)由“小”到“中”到“大”。

三、 應用舉例(略)

附:典型例題

1. 已知:a、b、_在數(shù)軸上的位置如下圖,求證:│_-a│+│_-b│

=b-a.

2.已知:a-b=-2且ab<0,(a≠0,b≠0),判斷a、b的符號。

初三數(shù)學知識點 第二章 代數(shù)式

★重點★代數(shù)式的有關概念及性質(zhì),代數(shù)式的運算

☆內(nèi)容提要☆

一、 重要概念

分類:

1.代數(shù)式與有理式

用運算符號把數(shù)或表示數(shù)的字母連結(jié)而成的式子,叫做代數(shù)式。單獨

的一個數(shù)或字母也是代數(shù)式。

整式和分式統(tǒng)稱為有理式。

2.整式和分式

含有加、減、乘、除、乘方運算的代數(shù)式叫做有理式。

沒有除法運算或雖有除法運算但除式中不含有字母的有理式叫做整式。

有除法運算并且除式中含有字母的有理式叫做分式。

3.單項式與多項式

沒有加減運算的整式叫做單項式。(數(shù)字與字母的積—包括單獨的一個數(shù)或字母)

幾個單項式的和,叫做多項式。

說明:①根據(jù)除式中有否字母,將整式和分式區(qū)別開;根據(jù)整式中有否加減運算,把單項式、多項式區(qū)分開。②進行代數(shù)式分類時,是以所給的代數(shù)式為對象,而非以變形后的代數(shù)式為對象。劃分代數(shù)式類別時,是從外形來看。如,

=_, =│_│等。

4.系數(shù)與指數(shù)

區(qū)別與聯(lián)系:①從位置上看;②從表示的意義上看

5.同類項及其合并

條件:①字母相同;②相同字母的指數(shù)相同

合并依據(jù):乘法分配律

6.根式

表示方根的代數(shù)式叫做根式。

含有關于字母開方運算的代數(shù)式叫做無理式。

注意:①從外形上判斷;②區(qū)別: 、 是根式,但不是無理式(是無理數(shù))。

7.算術平方根

⑴正數(shù)a的正的平方根( [a≥0—與“平方根”的區(qū)別]);

⑵算術平方根與絕對值

① 聯(lián)系:都是非負數(shù), =│a│

②區(qū)別:│a│中,a為一切實數(shù); 中,a為非負數(shù)。

8.同類二次根式、最簡二次根式、分母有理化

化為最簡二次根式以后,被開方數(shù)相同的二次根式叫做同類二次根式。

滿足條件:①被開方數(shù)的因數(shù)是整數(shù),因式是整式;②被開方數(shù)中不含有開得盡方的因數(shù)或因式。

把分母中的根號劃去叫做分母有理化。

9.指數(shù)

⑴ ( —冪,乘方運算)

① a>0時, >0;②a<0時, >0(n是偶數(shù)), <0(n是奇數(shù))

⑵零指數(shù): =1(a≠0)

負整指數(shù): =1/ (a≠0,p是正整數(shù))

二、 運算定律、性質(zhì)、法則

1.分式的加、減、乘、除、乘方、開方法則

2.分式的性質(zhì)

⑴基本性質(zhì): = (m≠0)

⑵符號法則:

⑶繁分式:①定義;②化簡方法(兩種)

3.整式運算法則(去括號、添括號法則)

4.冪的運算性質(zhì):① · = ;② ÷ = ;③ = ;④ = ;⑤

技巧:

5.乘法法則:⑴單×單;⑵單×多;⑶多×多。

6.乘法公式:(正、逆用)

(a+b)(a-b)=

(a±b) =

7.除法法則:⑴單÷單;⑵多÷單。

8.因式分解:⑴定義;⑵方法:a.提公因式法;b.公式法;c.十字相乘法;d.分組分解法;e.求根公式法。

9.算術根的性質(zhì): = ; ; (a≥0,b≥0); (a≥0,b>0)(正用、逆用)

10.根式運算法則:⑴加法法則(合并同類二次根式);⑵乘、除法法則;⑶分母有理化:a. ;b. ;c. .

11.科學記數(shù)法: (1≤a<10,n是整數(shù)=

三、 應用舉例(略)

四、 數(shù)式綜合運算(略)

初三數(shù)學知識點:第三章 統(tǒng)計初步

★重點★

☆ 內(nèi)容提要☆

一、 重要概念

1.總體:考察對象的全體。

2.個體:總體中每一個考察對象。

3.樣本:從總體中抽出的一部分個體。

4.樣本容量:樣本中個體的數(shù)目。

5.眾數(shù):一組數(shù)據(jù)中,出現(xiàn)次數(shù)最多的數(shù)據(jù)。

6.中位數(shù):將一組數(shù)據(jù)按大小依次排列,處在最中間位置的一個數(shù)(或最中間位置的兩個數(shù)據(jù)的平均數(shù))

二、 計算方法

1.樣本平均數(shù):⑴ ;⑵若 , ,…, ,則 (a—常數(shù), , ,…, 接近較整的常數(shù)a);⑶加權(quán)平均數(shù): ;⑷平均數(shù)是刻劃數(shù)據(jù)的集中趨勢(集中位置)的特征數(shù)。通常用樣本平均數(shù)去估計總體平均數(shù),樣本容量越大,估計越準確。

2.樣本方差:⑴ ;⑵若 , ,…, ,則 (a—接近 、 、…、 的平均數(shù)的較“整”的常數(shù));若 、 、…、 較“小”較“整”,則 ;⑶樣本方差是刻劃數(shù)據(jù)的離散程度(波動大小)的特征數(shù),當樣本容量較大時,樣本方差非常接近總體方差,通常用樣本方差去估計總體方差。

3.樣本標準差:

三、 應用舉例(略)

初三數(shù)學知識點:第四章 直線形

★重點★相交線與平行線、三角形、四邊形的有關概念、判定、性質(zhì)。

☆ 內(nèi)容提要☆

一、 直線、相交線、平行線

1.線段、射線、直線三者的區(qū)別與聯(lián)系

從“圖形”、“表示法”、“界限”、“端點個數(shù)”、“基本性質(zhì)”等方面加以分析。

2.線段的中點及表示

3.直線、線段的基本性質(zhì)(用“線段的基本性質(zhì)”論證“三角形兩邊之和大于第三邊”)

4.兩點間的距離(三個距離:點-點;點-線;線-線)

5.角(平角、周角、直角、銳角、鈍角)

6.互為余角、互為補角及表示方法

7.角的平分線及其表示

8.垂線及基本性質(zhì)(利用它證明“直角三角形中斜邊大于直角邊”)

9.對頂角及性質(zhì)

10.平行線及判定與性質(zhì)(互逆)(二者的區(qū)別與聯(lián)系)

11.常用定理:①同平行于一條直線的兩條直線平行(傳遞性);②同垂直于一條直線的兩條直線平行。

12.定義、命題、命題的組成

13.公理、定理

14.逆命題

二、 三角形

分類:⑴按邊分;

⑵按角分

1.定義(包括內(nèi)、外角)

2.三角形的邊角關系:⑴角與角:①內(nèi)角和及推論;②外角和;③n邊形內(nèi)角和;④n邊形外角和。⑵邊與邊:三角形兩邊之和大于第三邊,兩邊之差小于第三邊。⑶角與邊:在同一三角形中,

3.三角形的主要線段

討論:①定義②××線的交點—三角形的×心③性質(zhì)

① 高線②中線③角平分線④中垂線⑤中位線

⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等邊三角形

4.特殊三角形(直角三角形、等腰三角形、等邊三角形、等腰直角三角形)的判定與性質(zhì)

5.全等三角形

⑴一般三角形全等的判定(sas、asa、aas、sss)

⑵特殊三角形全等的判定:①一般方法②專用方法

6.三角形的面積

⑴一般計算公式⑵性質(zhì):等底等高的三角形面積相等。

7.重要輔助線

⑴中點配中點構(gòu)成中位線;⑵加倍中線;⑶添加輔助平行線

8.證明方法

⑴直接證法:綜合法、分析法

⑵間接證法—反證法:①反設②歸謬③結(jié)論

⑶證線段相等、角相等常通過證三角形全等

⑷證線段倍分關系:加倍法、折半法

⑸證線段和差關系:延結(jié)法、截余法

⑹證面積關系:將面積表示出來

三、 四邊形

分類表:

1.一般性質(zhì)(角)

⑴內(nèi)角和:360°

⑵順次連結(jié)各邊中點得平行四邊形。

推論1:順次連結(jié)對角線相等的四邊形各邊中點得菱形。

推論2:順次連結(jié)對角線互相垂直的四邊形各邊中點得矩形。

⑶外角和:360°

2.特殊四邊形

⑴研究它們的一般方法:

⑵平行四邊形、矩形、菱形、正方形;梯形、等腰梯形的定義、性質(zhì)和判定

⑶判定步驟:四邊形→平行四邊形→矩形→正方形

┗→菱形——↑

⑷對角線的紐帶作用:

3.對稱圖形

⑴軸對稱(定義及性質(zhì));⑵中心對稱(定義及性質(zhì))

4.有關定理:①平行線等分線段定理及其推論1、2

②三角形、梯形的中位線定理

③平行線間的距離處處相等。(如,找下圖中面積相等的三角形)

5.重要輔助線:①常連結(jié)四邊形的對角線;②梯形中?!捌揭埔谎?、“平移對角線”、“作高”、“連結(jié)頂點和對腰中點并延長與底邊相交”轉(zhuǎn)化為三角形。

6.作圖:任意等分線段。

四、 應用舉例(略)

初三數(shù)學知識點 第五章 方程(組)

★重點★一元一次、一元二次方程,二元一次方程組的解法;方程的有關應用題(特別是行程、工程問題)

☆ 內(nèi)容提要☆

一、 基本概念

1.方程、方程的解(根)、方程組的解、解方程(組)

2. 分類:

二、 解方程的依據(jù)—等式性質(zhì)

1.a=b←→a+c=b+c

2.a=b←→ac=bc (c≠0)

三、 解法

1.一元一次方程的解法:去分母→去括號→移項→合并同類項→

系數(shù)化成1→解。

2. 元一次方程組的解法:⑴基本思想:“消元”⑵方法:①代入法

②加減法

四、 一元二次方程

1.定義及一般形式:

2.解法:⑴直接開平方法(注意特征)

⑵配方法(注意步驟—推倒求根公式)

⑶公式法:

⑷因式分解法(特征:左邊=0)

3.根的判別式:

4.根與系數(shù)頂?shù)年P系:

逆定理:若 ,則以 為根的一元二次方程是: 。

5.常用等式:

五、 可化為一元二次方程的方程

1.分式方程

⑴定義

⑵基本思想:

⑶基本解法:①去分母法②換元法(如, )

⑷驗根及方法

2.無理方程

⑴定義

⑵基本思想:

⑶基本解法:①乘方法(注意技巧!!)②換元法(例, )⑷驗根及方法

3.簡單的二元二次方程組

由一個二元一次方程和一個二元二次方程組成的二元二次方程組都可用代入法解。

初三數(shù)學知識點 六、 列方程(組)解應用題

一概述

列方程(組)解應用題是中學數(shù)學聯(lián)系實際的一個重要方面。其具體步驟是:

⑴審題。理解題意。弄清問題中已知量是什么,未知量是什么,問題給出和涉及的相等關系是什么。

⑵設元(未知數(shù))。①直接未知數(shù)②間接未知數(shù)(往往二者兼用)。一般來說,未知數(shù)越多,方程越易列,但越難解。

⑶用含未知數(shù)的代數(shù)式表示相關的量。

⑷尋找相等關系(有的由題目給出,有的由該問題所涉及的等量關系給出),列方程。一般地,未知數(shù)個數(shù)與方程個數(shù)是相同的。

⑸解方程及檢驗。

⑹答案。

綜上所述,列方程(組)解應用題實質(zhì)是先把實際問題轉(zhuǎn)化為數(shù)學問題(設元、列方程),在由數(shù)學問題的解決而導致實際問題的解決(列方程、寫出答案)。在這個過程中,列方程起著承前啟后的作用。因此,列方程是解應用題的關鍵。

二常用的相等關系

1. 行程問題(勻速運動)

基本關系:s=vt

⑴相遇問題(同時出發(fā)):

+ = ;

⑵追及問題(同時出發(fā)):

若甲出發(fā)t小時后,乙才出發(fā),而后在b處追上甲,則

⑶水中航行: ;

2. 配料問題:溶質(zhì)=溶液×濃度

溶液=溶質(zhì)+溶劑

3.增長率問題:

4.工程問題:基本關系:工作量=工作效率×工作時間(常把工作量看著單位“1”)。

5.幾何問題:常用勾股定理,幾何體的面積、體積公式,相似形及有關比例性質(zhì)等。

三注意語言與解析式的互化

如,“多”、“少”、“增加了”、“增加為(到)”、“同時”、“擴大為(到)”、“擴大了”、……

又如,一個三位數(shù),百位數(shù)字為a,十位數(shù)字為b,個位數(shù)字為c,則這個三位數(shù)為:100a+10b+c,而不是abc。

四注意從語言敘述中寫出相等關系。

如,_比y大3,則_-y=3或_=y+3或_-3=y。又如,_與y的差為3,則_-y=3。五注意單位換算

如,“小時”“分鐘”的換算;s、v、t單位的一致等。

七、應用舉例(略)

初三數(shù)學知識點:第六章 一元一次不等式(組)

★重點★一元一次不等式的性質(zhì)、解法

☆ 內(nèi)容提要☆

1. 定義:a>b、a

2. 一元一次不等式:a_>b、a_

3. 一元一次不等式組:

4. 不等式的性質(zhì):⑴a>b←→a+c>b+c

⑵a>b←→ac>bc(c>0)

⑶a>b←→ac

⑷(傳遞性)a>b,b>c→a>c

⑸a>b,c>d→a+c>b+d.

5.一元一次不等式的解、解一元一次不等式

6.一元一次不等式組的解、解一元一次不等式組(在數(shù)軸上表示解集)

7.應用舉例(略)

初三數(shù)學知識點 第七章 相似形

★重點★相似三角形的判定和性質(zhì)

☆內(nèi)容提要☆

一、本章的兩套定理

第一套(比例的有關性質(zhì)):

涉及概念:①第四比例項②比例中項③比的前項、后項,比的內(nèi)項、外項④黃金分割等。

第二套:

注意:①定理中“對應”二字的含義;

②平行→相似(比例線段)→平行。

二、相似三角形性質(zhì)

1.對應線段…;2.對應周長…;3.對應面積…。

三、相關作圖

①作第四比例項;②作比例中項。

四、證(解)題規(guī)律、輔助線

1.“等積”變“比例”,“比例”找“相似”。

2.找相似找不到,找中間比。方法:將等式左右兩邊的比表示出來。⑴

3.添加輔助平行線是獲得成比例線段和相似三角形的重要途徑。

4.對比例問題,常用處理方法是將“一份”看著k;對于等比問題,常用處理辦法是設“公比”為k。

5.對于復雜的幾何圖形,采用將部分需要的圖形(或基本圖形)“抽”出來的辦法處理。

五、 應用舉例(略)

初三數(shù)學知識點 第八章 函數(shù)及其圖象

★重點★正、反比例函數(shù),一次、二次函數(shù)的圖象和性質(zhì)。

☆ 內(nèi)容提要☆

一、平面直角坐標系

1.各象限內(nèi)點的坐標的特點

2.坐標軸上點的坐標的特點

3.關于坐標軸、原點對稱的點的坐標的特點

4.坐標平面內(nèi)點與有序?qū)崝?shù)對的對應關系

二、函數(shù)

1.表示方法:⑴解析法;⑵列表法;⑶圖象法。

2.確定自變量取值范圍的原則:⑴使代數(shù)式有意義;⑵使實際問題有

意義。

3.畫函數(shù)圖象:⑴列表;⑵描點;⑶連線。

三、幾種特殊函數(shù)

(定義→圖象→性質(zhì))

1. 正比例函數(shù)

⑴定義:y=k_(k≠0) 或y/_=k。

⑵圖象:直線(過原點)

⑶性質(zhì):①k>0,…②k<0,…

2. 一次函數(shù)

⑴定義:y=k_+b(k≠0)

⑵圖象:直線過點(0,b)—與y軸的交點和(-b/k,0)—與_軸的交點。

⑶性質(zhì):①k>0,…②k<0,…

⑷圖象的四種情況:

3. 二次函數(shù)

⑴定義:

特殊地, 都是二次函數(shù)。

⑵圖象:拋物線(用描點法畫出:先確定頂點、對稱軸、開口方向,再對稱地描點)。 用配方法變?yōu)?,則頂點為(h,k);對稱軸為直線_=h;a>0時,開口向上;a<0時,開口向下。

⑶性質(zhì):a>0時,在對稱軸左側(cè)…,右側(cè)…;a<0時,在對稱軸左側(cè)…,右側(cè)…。

4.反比例函數(shù)

⑴定義: 或_y=k(k≠0)。

⑵圖象:雙曲線(兩支)—用描點法畫出。

⑶性質(zhì):①k>0時,圖象位于…,y隨_…;②k<0時,圖象位于…,y隨_…;③兩支曲線無限接近于坐標軸但永遠不能到達坐標軸。

四、重要解題方法

1. 用待定系數(shù)法求解析式(列方程[組]求解)。對求二次函數(shù)的解析式,要合理選用一般式或頂點式,并應充分運用拋物線關于對稱軸對稱的特點,尋找新的點的坐標。如下圖:

2.利用圖象一次(正比例)函數(shù)、反比例函數(shù)、二次函數(shù)中的k、b;a、b、c的符號。

六、應用舉例(略)

初三數(shù)學知識點 第九章 解直角三角形

★重點★解直角三角形

☆ 內(nèi)容提要☆

一、三角函數(shù)

1.定義:在rt△abc中,∠c=rt∠,則sina= ;cosa= ;tga= ;ctga= .

2. 特殊角的三角函數(shù)值:

0° 30° 45° 60° 90°

sinα

cosα

tgα /

ctgα /

3. 互余兩角的三角函數(shù)關系:sin(90°-α)=cosα;…

4. 三角函數(shù)值隨角度變化的關系

5.查三角函數(shù)表

二、解直角三角形

1. 定義:已知邊和角(兩個,其中必有一邊)→所有未知的邊和角。

2. 依據(jù):①邊的關系:

②角的關系:a+b=90°

③邊角關系:三角函數(shù)的定義。

注意:盡量避免使用中間數(shù)據(jù)和除法。

三、對實際問題的處理

1. 俯、仰角: 2.方位角、象限角: 3.坡度:

4.在兩個直角三角形中,都缺解直角三角形的條件時,可用列方程的辦法解決。

四、應用舉例(略)

初三數(shù)學知識點 第十章 圓

★重點★①圓的重要性質(zhì);②直線與圓、圓與圓的位置關系;③與圓有關的角的定理;④與圓有關的比例線段定理。

☆ 內(nèi)容提要☆

一、圓的基本性質(zhì)

1.圓的定義(兩種)

2.有關概念:弦、直徑;弧、等弧、優(yōu)弧、劣弧、半圓;弦心距;等圓、同圓、同心圓。

3.“三點定圓”定理

4.垂徑定理及其推論

5.“等對等”定理及其推論

5. 與圓有關的角:⑴圓心角定義(等對等定理)

⑵圓周角定義(圓周角定理,與圓心角的關系)

⑶弦切角定義(弦切角定理)

二、直線和圓的位置關系

1.三種位置及判定與性質(zhì):

2.切線的性質(zhì)(重點)

3.切線的判定定理(重點)。圓的切線的判定有⑴…⑵…

4.切線長定理

三、圓換圓的位置關系

1.五種位置關系及判定與性質(zhì):(重點:相切)

2.相切(交)兩圓連心線的性質(zhì)定理

3.兩圓的公切線:⑴定義⑵性質(zhì)

四、與圓有關的比例線段

1.相交弦定理

2.切割線定理

五、與和正多邊形

1.圓的內(nèi)接、外切多邊形(三角形、四邊形)

2.三角形的外接圓、內(nèi)切圓及性質(zhì)

3.圓的外切四邊形、內(nèi)接四邊形的性質(zhì)

4.正多邊形及計算

中心角:

內(nèi)角的一半: (右圖)

(解rt△oam可求出相關元素, 、 等)

六、 一組計算公式

1.圓周長公式

2.圓面積公式

3.扇形面積公式

4.弧長公式

5.弓形面積的計算方法

6.圓柱、圓錐的側(cè)面展開圖及相關計算

七、 點的軌跡

六條基本軌跡

八、 有關作圖

1.作三角形的外接圓、內(nèi)切圓

2.平分已知弧

3.作已知兩線段的比例中項

4.等分圓周:4、8;6、3等分

九、 基本圖形

十、 重要輔助線

1.作半徑

2.見弦往往作弦心距

3.見直徑往往作直徑上的圓周角

4.切點圓心莫忘連

5.兩圓相切公切線(連心線)

6.兩圓相交公共弦

九年級知識點總結(jié)(優(yōu)選4篇)

1、化學是一門研究物質(zhì)的組成、結(jié)構(gòu)、性質(zhì)以及變化規(guī)律的以實驗為基礎自然科學。物理和化學的共同點:都是以實驗為基礎的自然科學.2、化學變化和物理變化的根本區(qū)別是:有沒有…
推薦度:
點擊下載文檔文檔為doc格式

相關九年級知識點信息

  • 九年級知識點總結(jié)(優(yōu)選4篇)
  • 九年級知識點總結(jié)(優(yōu)選4篇)55人關注

    1、化學是一門研究物質(zhì)的組成、結(jié)構(gòu)、性質(zhì)以及變化規(guī)律的以實驗為基礎自然科學。物理和化學的共同點:都是以實驗為基礎的自然科學.2、化學變化和物理變化的根本區(qū) ...[更多]

相關專題

教學工作總結(jié)熱門信息